

浙江大学物理化学实验

原电池电动势的测定及其应用

实

验

报

告

参加学生: 叶青杨(3210100360)

指导老师: 方文军

浙江大学化学实验教学中心 2023 年 11 月 2 日

原电池电动势的测定及其应用

叶青杨 (3210100360), 指导教师: 方文军

一、原理

电极的能斯特方程:

$$E = E^{\theta} - \frac{RT}{zF} \ln \frac{\prod_{i}^{n} [Re_{i}]^{a_{i}}}{\prod_{i}^{m} [Ox_{i}]^{b_{i}}}$$

电池的热力学参数可以通过电池的电动势计算得到

$$\Delta_r G_m = -zFE$$

$$\Delta_r S_m = z F(\frac{\partial E}{\partial T})_p$$

$$\Delta_r H_m = \Delta_r G_m + T \Delta_r S_m$$

$$E^{\Theta} = \frac{RT}{zF} \ln K^{\Theta}$$

实验通过补偿法测定原电池的电动势,用一个方向相反但是数值相同的电动势与待测电池的电动势比较,使经过待测电路的电路中电流趋于零,这是与待测电池比较的电动势就等于该电池的电动势 E。电路部分略。

电池 1:

正极

$$AgCl + e^- \rightarrow Ag + Cl^-(c)$$

负极

$$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-(c_f)$$

电池 2:

正极

$$Aq^+(c) + e^- \rightarrow Aq$$

负极

$$Hq_2Cl_2 + 2e^- \rightarrow 2Hq + 2Cl^-(c_f)$$

电池 3:

正极

$$Aq^+(c) + e^- \rightarrow Aq$$

负极

$$AgCl + e^- \rightarrow Ag + Cl^-(c)$$

电池 4:

正极

$$Ag^+(c_o) + e^- \rightarrow Ag$$

负极

$$Ag^+(c) + e^- \to Ag$$

- 1 试剂与仪器
- 1.1 试剂

 $0.100 \ mol \cdot L^{-1} AgNO_3$ 溶液; $0.200 \ mol \cdot L^{-1} KCl$ 溶液

1.2 仪器

UJ-25 型高电势直流电位差计;见六级;惠斯通标准电池;工作电源;导线;饱和甘汞电极;银/氯化银电极;银电极;50 mL 棕色瓶;1000 mL 容量瓶;50 mL 酸式滴定管;洗瓶;废液杯;0[#] 砂纸;恒温槽;饱和硝酸钾盐桥

- 二、实验
- 2 实验步骤 [1]
- 1. 制备电极(略)
- 2. 制备盐桥

琼胶: KNO_3 : $H_2O=1.5$: 20: 50(质量比)加入锥形瓶,热水浴加热溶解,用滴管加入干净 U 形管中,不留气泡,冷却后备用

- 3. 电动势测定
- (1) 配置 0.0100、0.0300、0.0400、0.0700、0.0900 mol· L^{-1} 梯度的 $AgNO_3$ 溶液 50mL

配置 0.0100、0.0300、0.0400、0.0700、0.0900 mol· L^{-1} 梯度的 KCl 溶液 100mL

- (2) 根据补偿法原理连接好电路
- (3) 读取温度,根据温度校正惠斯通标准电极电动势

$$E/V = 1.018625 - [39.94(t/^{\circ}C - 20) + 0.929(t/^{\circ}C - 20)^{2} -0.0090(t/^{\circ}C - 20)^{3} + 0.00006(t/^{\circ}C - 20)^{4}] \times 10^{-6}$$

在调整好补温度补偿后,在 N 档下,调节工作电流,直到检流计归零

(4) 在未知 1 档下,按照电池组成组装电池,在 X1 挡位下测定电动势平行 3 次

4. 不同温度下原电池电动势测定

在第三组电池中选择 $0.0900 \mathrm{mol} \cdot L^{-1}$ 测定至少 5 个温度的电动势实验结束。盐桥归为,其他仪器复原,检流计短路保护使用 python 处理实验数据和绘图

3 实验结果与分析

3.1 **实验一**

室内气温: 27.0°C 室内气压: 102.50kPa

校正后的 $E_n = 1.018303 \text{ V}$

在水浴温度为 25.39 摄氏度下, 测定的数据和处理如下:

表 1 实验得到的原始数据

浓度 $/mol^{-1}$	0.0100	0.0300	0.0500	0.0700	0.0900
	0.105700	0.082200	0.068220	0.058800	0.053350
E_1/V	0.106500	0.082000	0.068550	0.059500	0.053550
	0.106800	0.082020	0.068560	0.059710	0.053560
	0.395600	0.425000	0.436400	0.444020	0.448400
E_2/V	0.397800	0.424900	0.436400	0.443810	0.448020
	0.397900	0.424990	0.435900	0.443820	0.448010
	0.326600	0.355400	0.376400	0.392400	0.402100
E_3/V	0.327500	0.355500	0.376300	0.392800	0.401600
	0.328000	0.355600	0.376200	0.393100	0.401400
	0.061100	0.028773	0.019000	0.009900	0.009940
E_4/V	0.059110	0.028860	0.018950	0.010210	0.009300
	0.058300	0.028892	0.018920	0.010130	0.009200

表 2 电池 1

浓度 $/mol^{-1}$	0.0100	0.0300	0.0500	0.0700	0.0900
E/V	0.106333	0.082067	0.068443	0.059337	0.053420
$E_{AgCl/Ag}$	0.3475	0.3233	0.3096	0.3005	0.2946
$a(Cl^-)$	0.0100	0.0300	0.0500	0.0700	0.0900
$\lg a(Cl^-)$	-2.00	-1.52	-1.30	-1.15	-1.05

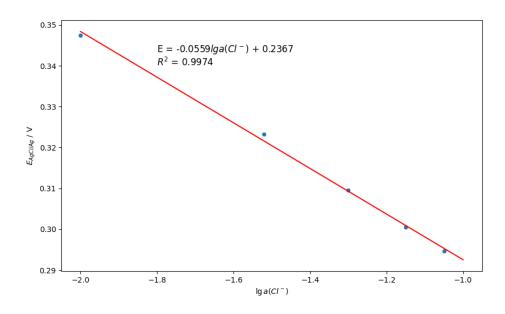


图1 电池1的拟合图像

表 3 电池 2

 浓度/mol ⁻¹	0.0100	0.0300	0.0500	0.0700	0.0900
E/V	0.397100	0.424933	0.436233	0.443883	0.448143
$E_{Ag^+/Ag}$	0.6383	0.6661	0.6774	0.6851	0.6893
$a(Ag^+)$	0.0100	0.0300	0.0500	0.0700	0.0900
$\lg a(Ag^+)$	-2.00	-1.52	-1.30	-1.15	-1.05

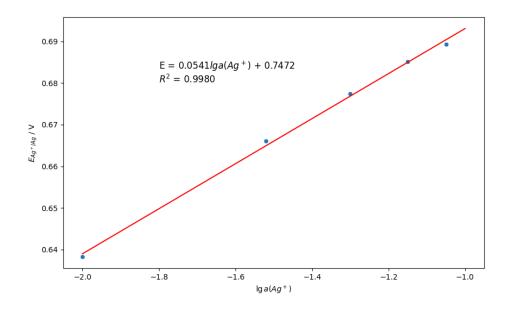
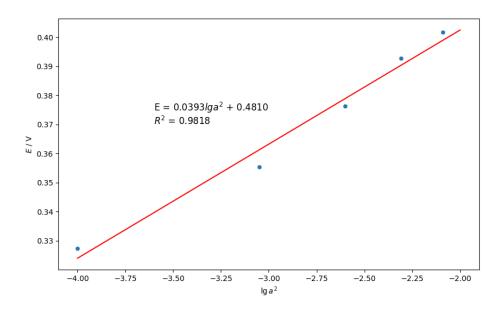



图 2 电池 2 的拟合图像

表 4 电池 3

浓度 $/mol^{-1}$	0.0100	0.0300	0.0500	0.0700	0.0900
E/V	0.327367	0.355500	0.376300	0.392767	0.401700
a	0.0100	0.0300	0.0500	0.0700	0.0900
$\lg a^2$	-4.00	-3.05	-2.60	-2.31	-2.09

(1) 保留第一个点的拟合图像

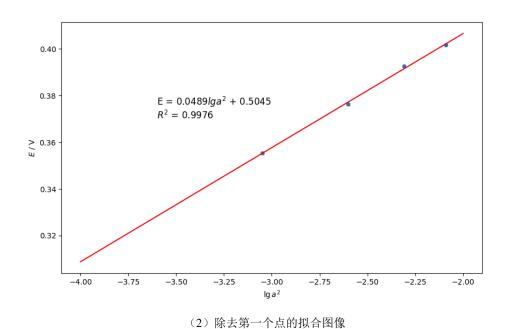
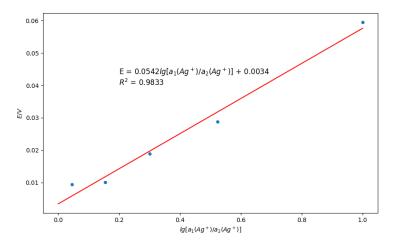


图 3 电池 3 的拟合图像

我们发现对于电池 3,第一个点的偏差过大,可以考虑舍去 根据电池 1,2 结果计算得到的电池 3 的标准电动势为 0.7472V-0.2367V=0.5105V 根据电池 3 电动势数据外推得到的标准电动势为 0.4810V, 在去除第一个点后,为 0.5045V

根据公式


$$E^{\Theta}_{AgCl/Ag} = E^{\Theta}_{Ag^+/Ag} - \frac{RT}{zF} \ln \frac{1}{K_{sp}}$$

计算得到 $K_{sp}=2.4 \times 10^{-9}$

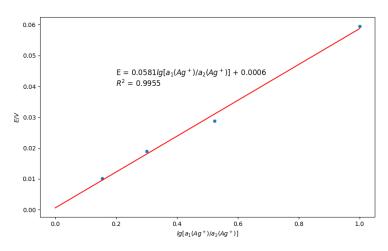

查询数据,25 摄氏度的标准数据为 1.77×10^{-10} ,相差一个数量级,在电动势上的差距约为 0.067V

表 5 电池 4

來度 $/mol^{-1}$	0.0100	0.0300	0.0500	0.0700	0.0900
E/V	0.059503	0.028841	0.018957	0.010080	0.009480
$a_1(Ag^+)$	0.100	0.100	0.100	0.100	0.100
$a_2(Ag^+)$	0.0100	0.0300	0.0500	0.0700	0.0900
$lg[a_1(Ag^+)/a_2(Ag^+)]$	1.00	0.523	0.301	0.155	0.0458

(1) 保留最后一个点的拟合图像

(2) 除去最后一个点的拟合图像

图 4 电池 4 的拟合图像

我们发现对于电池 4, 最后一个点的偏差过大, 可以考虑舍去

拟合曲线的截距理论上为 0,由于液接电势(超电势)的存在和测量误差等因素,故不为 0,斜率在理论上为 $RT \ln 10/F \approx 0.05926$,实验上为 0.0591(除去最后一个点),较为接近

表 6 电池 3 (0.0900M) 随温度变化的电动势

温度/°C	电动势/V
	0.402100
25.39	0.401600
	0.401400
	0.399900
30.00	0.399800
	0.399710
	0.397570
35.00	0.397600
	0.397300
	0.394850
40.00	0.394630
	0.394600
	0.391300
45.00	0.391100
	0.391040

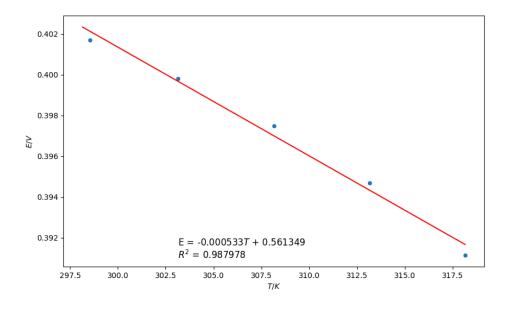


图 5 电池 3 (0.0900M) 电动势与温度的图像

 $(rac{\partial E}{\partial T})_p$ 为-0.000533 $\Delta_r S_m = -51.4\ J\cdot mol^{-1}\cdot K^{-1}$

表 7 计算得到的不同温度下的电池 3 (0.0900M)的热力学函数

温度/℃	$\Delta_r S_m / J \cdot mol^{-1} \cdot K^{-1}$	$\Delta_r G_m/kJ \cdot mol^{-1}$	$\Delta_r H_m/kJ \cdot mol^{-1}$
25.39		-38.76	
30.00		-38.57	
35.00	-51.4	-38.35	-54.1
40.00		-38.08	
45.00		-37.74	

本次实验理应对各个体系进行活度校正,才能得到更正确的计算结果,在上述的计算中我们认为溶液均较稀,假设了活度系数均为1。

四、参考文献

[1] 王国平, 张培敏, 王永尧. 中级化学实验 [M]. 北京: 科学出版社, 2017.